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Abstract--The prefrontal cortex of primates is an integrative centre for sensory, cognitive, mnemonic and 
emotional processes. The cellular features which contribute to the functional specialization of its 
subsectors are poorly understood. In this study we determined the distribution of nicotinamide adenine 
dinucleotide phosphate-diaphorase-positive neurons in structurally and functionally distinct prefrontal 
cortices in the rhesus monkey. This class of neurons express nitric oxide synthase which is necessary for 
the production of nitric oxide, a novel neural messenger implicated in learning and memory. The density 
of diaphorase-positive neurons was approximately four times higher in olfactory areas than in eulaminate 
areas (areas 9, 10, 12, 46, and 8), and two- to three-times higher in the agranular limbic area PAll than 
in eulaminate areas. Positive neurons were concentrated" in a deep band (layers V and VI), a superficial 
band (layers II and upper III), and were sparsely distributed in the central, thalamic recipient zone (deep 
layer III, layer IV and upper V). The highest densities of positive neurons were observed in the white 
matter where their prevalence followed the opposite trend than in the corresponding overlying cortices. 
The distribution of diaphorase-positive neurons was correlated with the regional anatomic and functional 
specialization of prefrontal cortices. Thus, diaphorase-positive neurons were most densely distributed in 
orbital and then medial prefrontal limbic cortices which have a low cell density and widespread 
connections. In contrast, positive neurons were comparatively sparse in eulaminate cortices, which have 
a high cell density and more restricted connections. 

These findings indicate that the distribution of diaphorase-positive neurons in prefrontal cortices is not 
random, but is associated with the structural architecture and functional attributes of these cortices. The 
preponderance of diaphorase-positive neurons in limbic cortices, which have been implicated in learning 
and memory, is consistent with the idea that nitric oxide may have a role in synaptic plasticity. 
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The  pref ronta l  cortex of  the rhesus monkey  is a 
s t ructural ly  and  funct ional ly  he terogeneous  region 
(for reviews, see Refs 7, 9, 37, 43 and  92). Pref ronta l  
cortices are connec ted  with every cortical sensory 
system and  the m o t o r  cortices, and  are thus capable  
of  in tegra t ing  in fo rmat ion  for ac t ion (for review, see 
Ref. 38). A m o n g  pref ronta l  cortices, the limbic areas, 
which are s i tuated on  the caudal  orbi ta l  and  medial  
surfaces, have  the mos t  d is t r ibuted network.  Their  
rich in te rconnec t ions  with diencephalic,  t empora l  and  
cingulate  structures,  8:lA2'32,75`s2's8 suggest tha t  they 

are an  integral  par t  of  a neural  ne twork  involved in 
mnemon ic  processing. 

The  cellular features which may cont r ibu te  to the 
funct ional  specialization of  pref ronta l  subareas  are 
poorly unders tood .  In the present  study, we investi- 

~To whom correspondence should be addressed. 
Abbreviations: DMSO, dimethylsulfoxide; NADPH, nicotin- 

amide adenine dinucleotide phosphate; NADPHd, 
NADPH diaphorase; NO, nitric oxide; NOS, NO 
synthase. 

gated the organiza t ion  of  neurons  which conta in  
n ico t inamide  adenine  dinucleotide phospha te -  
d iaphorase  ( N A D P H d )  in the prefronta l  cortex. The 
significance of  this class of  neurons  is based on  their  
ability to synthesize nitric oxide (NO),  a novel  neural  
messenger which has been implicated in learning and  
memory  ls,s°,99,125 (for review, see Refs 22, 31, 100). 

N A D P H d  or nitric oxide synthase (NOS)-posi t ive 
neurons  appear  to be resis tant  to dest ruct ion in 
Alzheimer ' s  and  Hun t ing ton ' s  disease,  35'59'62'77 to 
ischemia, aging and  exposure to several different 
tox ins  16'17"25'36'53-56'112 (for  review, see Refs 28, 30). 

Neurons  which conta in  d iaphorase  or  NOS thus seem 
to form a unique  subclass with  specific properties.  

To determine the d is t r ibut ion  of  N A D P H d  posi- 
tive neurons  in the pref ronta l  cortex we used a 
his tochemical  procedure.  Our  app roach  was based on  
findings which indicate tha t  in the m a m m a l i a n  CNS,  
including the cortex, the dis t r ibut ions  of  neurons  
which have d iaphorase  activity and  NOS largely 
coincide. 21'29'45"47'63 In view of  the above  findings, 
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in r ecen t  s tud ies  i nves t i ga t o r s  h a v e  used  the  desig-  
n a t i o n  d i a p h o r a s e  a n d  N O S  i n t e r c h a n g e a b l y .  1°2.122 

It s h o u l d  be  n o t e d  t ha t  the  d i s t r i b u t i o n  o f  

d i a p h o r a s e - p o s i t i v e  n e u r o n s  in severa l  neu ra l  

s t r u c t u r e s  h a d  been  desc r ibed ,  a lbei t  n o t  q u a n t i t a t -  

ively, p r i o r  to its a s s o c i a t i o n  wi th  N O S  h a d  been  
established. 2°'27"34"6°'61,TI-74,76'9n-96~l°l'j°5,l°9'117'l18 Neve r -  

theless ,  severa l  q u e s t i o n s  a b o u t  t he  o r g a n i z a t i o n  o f  

d i a p h o r a s e - p o s i t i v e  n e u r o n s  r e m a i n  u n r e s o l v e d .  F o r  

e x a m p l e ,  a re  d i a p h o r a s e - p o s i t i v e  n e u r o n s  u n i f o r m l y  

o r  d i f ferent ia l ly  d i s t r i b u t e d  in the  h e t e r o g e n e o u s  ex- 

p a n s e  o f  the  p r e f r o n t a l  cor tex?  I f  the re  a re  r eg iona l  

va r i a t i ons ,  a re  a r e a s  wi th  h i g h  d i a p h o r a s e  e x p r e s s i o n  

un i f ied  by  s o m e  c o m m o n  a n a t o m i c  or  f u n c t i o n a l  

a t t r i bu t e?  

EXPERIMENTAL PROCEDURES 

Data were obtained from brain tissue of  five adult rhesus 
monkeys (Macaca mulatta). Experimental procedures were 
conducted according to the NIH Guide for the Care and 
Use of Laboratory Animals  (NIH pub. No. 80-22, 1987). All 
efforts were taken to reduce the number  of  monkeys used 
and to minimize suffering. The monkeys had received small 
intracerebral injections of  either horseradish peroxidase or 
fluorescent dyes in connection with other experiments. In 
the former, perfusion through the heart  was initiated with 
saline, followed by 21 of  fixative (1.25% glutaraldehyde, 1% 
paraformaldehyde in phosphate  buffer (0.1 M, pH 7.4) 
delivered over a 30 min period, followed by perfusion with 
21 of  cold (4°C) phosphate  buffer. The brain then was 
removed from the skull, photographed,  placed in glycerol 
phosphate  buffer (10% glycerol and 2% dimethylsulfoxide 
(DMSO) in 0.1 M phosphate  buffer at pH 7.4) for one day 
and then transferred in 20% glycerol phosphate  buffer for 
another  two days. In animals injected with fluorescent dyes, 
perfusion was initiated with saline followed by 4% 
paraformaldehyde in 0.1 M cacodylate buffer at pH 7.4. The 
brain then was placed in a solution of 4% paraformaldehyde 
with 10% glycerol and 2% DM S O for one day, and 
transferred to a solution containing 20% glycerol in 2% 
DMSO for another  two days. 

The brain was frozen in - 7 5 ° C  isopentane 9° and trans- 
ferred to a freezing microtome. Sections were cut in the 
coronal plane at 40/~m in 10 series, and collected in a 
solution of 0.1 M phosphate  buffer (pH 7.4). Adjacent 
series of  sections were stained for Nissl bodies, myelin, 
and acetylcholinesterase to aid in delineating architectonic 
borders. 41,42 

NADPH diaphorase staining 

Recent biochemical and histochemical evidence indicates 
that, at least in the central nervous system of mammals ,  
N A D P H d  is a good marker  for N O S .  45'47"63 In the 
Results we use the terms N A D P H d  or diaphorase for 
consistency. 

Staining for diaphorase was performed by using a slight 
modification of methods previously described. 34,97,1t° Free- 
floating sections were washed three times (10 min each) at 
37°C in 0.1 M Tris-HC1 buffer (pH 7.4). The tissue was then 
incubated at 40°C in 0.1 M Tris-HCl  buffer containing 
0.8 m M  fl-nicotinamide adenine dinucleotide phosphate,  
reduced form (NADPH,  Sigma N-1630), 0.8 m M  Nitro Blue 
Tetrazolium (Sigma N-6876), 0.1% Triton-X, and 0.16% 
malic acid for 60-90 min with constant  agitation. Sections 
then were washed three times (10min each) in 0 .1M 
Tris HC1 buffer, mounted on chrome-alum coated slides 
and allowed to dry. Sections were then counterstained in 
1% Neutral Red solution, dehydrated through graded alco- 
hols (70 100%), cleared in xylene and coverslipped with 
Permount  (Fisher Scientific). In control experiments either 
N A D P H  or Nitro Blue Tetrazolium were omitted but all 
other steps were identical to the experimental. 

Data acquisition 

Brain sections prepared according to the above method 
were viewed microscopically under bright-field illumination. 
Drawings of  brain sections through the prefrontal and 
adjacent cortices, diaphorase-positive neurons, and the site 
of  blood vessels used as landmarks were transferred from 
the slides onto paper using a digital plotter (Hewlett 
Packard 7475A) electronically coupled to the stage of the 
microscope and to a computer  (Compaq 386). The analogue 
signals were converted to digital signals via an analogue-to- 
digital converter (Data Translation) in the computer.  Each 
diaphorase-positive neuron was recorded by aligning the 
centre of  the cross hair (permanently fixed in one eyepiece 
of the microscope) with the centre of  the labelled neuron and 
pressing a button. The location of  diaphorase-positive neur- 
ons was recorded using different symbols and colours to 
indicate labelled neurons in layers I-III, layers I V V I ,  
proximal white matter,  and deep white matter. Software 
developed in this laboratory ensured that each labelled 
neuron was recorded only once. 

Data analysis 

The frontal cortices were reconstructed serially using the 
sulci as landmarks and are shown on diagrams of the surface 
of the cortex. Unfolded maps  of the cortex were prepared 
according to a method described previously. 6,~3 References 
to architectonic areas of  the prefrontal cortex are according 
to a classification described previously/4 

Areal measures and the number  of  diaphorase-positive 
neurons for superficial (layers I-III) and deep (layers IV VII) 
cortical layers, proximal white matter,  and deep white 
matter below each architectonic area were counted separ- 
ately in every section. For purposes of  analysis, the white 
matter  was also subdivided into its deep and proximal part 
(Table 1); the latter lies just below layer VI and corresponds 
to the region which includes the cortical association fibres. TM 

Labelled neurons in the white matter  were concentrated 
either superficially just below layer VI, or in a deep zone 
which is situated below the proximal white matter  zone. A 
central region in the white matter was devoid of  labelled 
neurons and served as an arbitrary demarcation zone be- 
tween the superficial and deep white matter. In areas where 

A arcuate sulcus 
CC corpus callosum 
Cg cingulate sulcus 
cl claustrum 
G gustatory 
lag insula, agranular  
IdgI Insula, dysgranular  
LF lateral fissure 
LO lateral orbital sulcus 

Abbreviations used in the table and figures 

MO 
OLF 

P 
PAll 
Pro 
ProM 
Ro 

medial orbital sulcus 
olfactory: olfactory tubercle, anterior olfactory 

nucleus, frontal prepiriform cortex 
principal sulcus 
periallocortex 
proisocortex 
rostral portion of  the ventral premotor cortex 
rostral sulcus 
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sulci are apposed, the deep white matter was divided equally 
between the two areas. 

Cell counts and areal extent were made using a micro- 
scope/computer interface as described previouslyJ 2 Density 
values were calculated as the number of diaphorase-positive 
neurons per unit area (mm2). "Total area" density in the 
Results refers to the sum of all labelled neurons in each 
cortical area and the underlying white matter (mm2). In 
Table 1 and in Results, "Total cortex" refers to the overall 
density of labelled neurons/mm 2 in all cortical layers for 
each area; "Total white matter" refers to the overall density 
of labelled neurons/mm 2 in the white matter below each area 
or group of areas (Table 1). 

RESULTS 

General observations 

The results are based on observations made in five 
adult rhesus monkeys. Diaphorase-posit ive neurons 
contained a blue reaction product and were clearly 
seen against a background of  unlabelled neurons 
counterstained with Neutral  Red. Positive staining 
distinguished the cell body and extensive branching 
of  processes. There was no staining in control 

sections in which either N A D P H  or Nitro Blue 
Tetrazolium were omitted. 

The regional distribution of  diaphorase-positive 
neurons was similar among the cases, although the 
overall density differed to some extent. Detailed 
quantitative analyses were made in three cases. In 
case A N  the regional density was 1.5~5.69 positive 
neurons per mm 2, in case AP it was 2.95-13.11, and 
in case EU it was 0.77~5.88. Differences in the overall 
density values may be due to different perfusion 
methods .  24'69'12° However,  because we found no con- 
sistent differences that could be attributed to the 
perfusion, overall differences in density may reflect 
individual variation among monkeys. 

Areal distribution of  diaphorase-positive neurons 

The areal distribution of  positive neurons is shown 
in two cases on reconstructed maps of  the frontal 
cortices and in coronal sections in Figs 1 and 2. The 
density of  labelled neurons is shown in Table 1. The 
overall density of  positive neurons was highest in 
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caudal orbital areas and the adjacent insular areas, 
followed by rostral orbital and medial areas, and was 
lowest in lateral prefrontal areas (Table l; Figs 1-3). 

Among caudal orbital areas, labelled neurons were 
most prevalent in the primary olfactory areas 
(Table 1; Figs 1A bottom; IB bottom; lC section 6; 
2 bottom; 3A, D), followed by areas PAll, Pro, the 
dysgranular insula (Idg) and the gustatory (G) area 
(Table 1). In rostral orbital areas, the density of 
diaphorase-positive neurons was somewhat lower 
than in the caudal areas (Figs 1A bottom; 1B bottom; 
1C; 2 bottom). 

Medial prefrontal cortices showed the next highest 
regional density of positive neurons (Figs 1A top; 1B 
top; 1C; 2 top; 3B, E). Among medial areas, the 
highest density of positive neurons was observed in 
the medial part of area 25, followed by areas 24, 32, 
and 14 and then the medial parts of areas 10 (M10) 
and 9 (M9; Figs 1A top; 1B top; 2 top). 

The incidence of positive neurons was lowest in 
lateral prefrontal areas, particularly in lateral areas 

10 (L10) and 12 (L12), and dorsal areas 10 (DI0) and 
9 (D9; Figs. 1A centre; 1B centre; 1C; 2 centre; 
3C, F). Among lateral cortices, areas 46, 8, and 6 had 
an intermediate density of positive neurons. 

Regional  distribution o f  diaphorase-positive neurons 

We combined data from prefrontal areas with 
similar laminar definition to determine whether re- 
gional differences in the distribution of labelled neur- 
ons were related to differences in laminar 
characteristics noted previously/4 Categories were 
constructed on the basis of number of layers and 
laminar definition, and are shown in Table 1. At one 
extreme olfactory paleocortical areas have either a 
nuclear appearance (e.g., anterior olfactory nucleus) 
or are organized into three layers (e.g., prepiriform 
cortex). The second category included the agranular 
area PAll, and the third category included all dys- 
granular areas. Agranular and dysgranular associ- 
ation cortices are collectively called limbic. The 
following three categories included eulaminate areas, 
which have six layers, but nevertheless show small 
differences in laminar distinction. They were grouped 
in an ascending order for laminar definition. The 
distribution of positive neurons in premotor area 6 
was similar to the last group and is illustrated in 
Figs 1 and 2. The values for area 6 are not included 
in Table 1 because they were not computed beyond 
the caudal limit of the prefrontal cortex at the spur 
of the arcuate sulcus. 

We first examined whether regional variations of 
labelled neurons were consistent among cases. The 
regional distribution of diaphorase-positive neurons 
among cases was highly correlated (rank order; 
P < 0.02). As shown in Fig. 4A, where the six cortical 
categories were ranked by density of labelled neur- 
ons, the plots among cases were virtually identical. 
This indicates that the regional distribution of 
labelled neurons was similar among cases. We then 
examined whether the regional differences in the 
distribution of positive neurons were statistically 
significant. An analysis of variance showed overall 
significant differences in total cortical density of 
NADPHd-positive neurons among the cortical cat- 
egories ( F =  5.27, P <0.01). The regional distri- 
bution of diaphorase-positive neurons (Table l, 
"Total cortex") was approximately four times higher 
in olfactory areas (category 1) than in eulaminate 
areas (categories 5 and 6), and their density in the 
agranular area PAll (category 2) was 2-3 times higher 
than in eulaminate areas (Table 1). The density of 
labelled neurons in dysgranular areas (category 3) fell 
between the above two extremes. 

Diaphorase-posit ive neurons in the white mat ter  

Numerous positive neurons were noted in the white 
matter below all cortical areas (Figs 1C; 3; 5). The 
white matter had an overall higher density of labelled 
neurons than the overlying cortical areas, with the 
exception of the olfactory cortex and area PAll, 
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Fig. 1. The distribution of diaphorase positive neurons in the cortex in case AN is shown on an unfolded 
map of the frontal cortex (a); on the medial, lateral, and basal surfaces of the cortex (b); and in diagrams 
of coronal sections (c) in rostral (1) through caudal (6) prefrontal levels taken at the levels indicated by 
arrows in parts a and b. Medial is to the left. The symbols here and in Fig. 3 are as follows: open circles 
represent labelled neurons in layers I-III, filled circles in layers IV-VI, triangles in proximal white matter, 
black squares in the deep white matter. The density of symbols in the maps is proportional to the overall 
density of diaphorase-positive neurons in each cortical area, or in the white matter below each area (see 
Table 1). Architectonic areas are separated by dashed lines. Medial, lateral, and basal surfaces in part a 

are separated by a thin line with triangles. 

where the inverse relationship was observed (Table 1, 
compare  "Total  cor tex"  with "Total  white matter") .  
The density of  diaphorase-posi t ive neurons in 
the underlying white mat ter  ranged f rom 4.56 to 

9.42/mm 2 in case AN,  and 1.05 to 6.07/mm 2 in case 
AP (Table 1). Within the white matter  the highest 
density of  labelled neurons was noted below areas 46, 
8, lateral areas 10 and 12, and dorsal areas 10 and 9 
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Fig. 2. The distribution of diaphorase-positive neurons in case AP is shown on the medial, lateral, and 
basal surfaces. Each surface was reconstructed separately to minimize angular distortion. The straight line 
along a sulcus in each surface shows the reference for each view. The medial parts of areas 10 and 9 and 
the orbital part of area 12 have been included in the lateral surface in order to preserve the continuity 

of the areas. Similarly, medial parts of areas 25 and 14 have been included with the basal surface. 

(Table 1; Figs 1C; 3C, F; 5). The next highest density 
of  positive neurons was seen below rostral orbital and 
medial areas (areas 11, 13, 24, 32, 14 and 25; Table 1; 
Figs 1C; 3B, E), and the lowest density was noted 
below the olfactory cortex, areas PAll, Pro, and the 
agranular and dysgranular parts of  the insula 
(Table 1; Figs 1C; 3A, D). As shown in Fig. 4B, the 
regional density of  labelled neurons in the white 
matter  was inversely related to its regional distri- 
bution in the overlying cortex. 

Laminar and white matter  distribution o f  diaphorase- 
positive neurons 

In eulaminate and dysgranular areas the upper 
layers include layers I - I I I ,  and the deep include layers 
IV-VI.  In the agranular area PAll and the olfactory 

prepiriform area, which have only three distinguish- 
able layers, ~4 the superficial zone includes layers I and 
II and the deep zone includes layer III. In some 
olfactory areas, such as the olfactory tubercle, where 
no clear lamination can be observed in the rhesus 
monkey, the division into upper and lower layers was 
made by bisecting each area. 

In most areas the relative distribution of  di- 
aphorase-positive neurons in the cortex was higher in 
the deep layers than in the upper layers (Table 1, 
layers IV-VI  and layers I-III) .  The above observation 
may be attributed to the inclusion of  the cell-sparse 
layer I with the upper layers. However, our findings 
indicated that excluding layer I did not  change signifi- 
cantly the overall trend of  densities by layers in 
most areas. In the white matter, the distribution of  
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diaphorase-positive neurons was higher in its 
proximal than in its deep component  (Table 1; 
Figs IC; 5). 

Positive neurons in the cortex were arranged into 
two distinct bands: one was concentrated in the deep 
part of  the infragranular layers, and the other occu- 
pied layers II and the upper part of  layer III. The 
arrangement  of  positive neurons into a deep and a 
superficial band left a central zone where positive 
neurons were comparatively sparsely distributed 
(Fig. 1C). The latter included the deep part of  
layer III, granular layer IV, and the upper part of  
layer V. 

Other labelling 

We made a few observations on overall back- 
ground activity and fibre distribution in the cortex. 
There was a dense and diffuse plexus of  positive 
activity in the olfactory cortex which included a 
superficial and a deep component  (Fig. 3A). Simi- 
larly, the indusium griseum showed dense back- 
ground activity. We could not determine whether this 
activity was a result of  extensive dendritic or  axonal 
branching or even if it occupied extracellular as well 
as intracellular compartments.  This pattern of  overall 
background labelling was unique to the above 
structures among those examined. 

We also noted a horizontally oriented strip of  
positive fibres in the central part of  layer I, which 
was particularly prominent  in eulaminate areas 8 
and 46 (Figs 3C; 6A). In contrast, in limbic areas 
positive processes in layer I were diffusely distributed 
and less prominent  (Figs 3B; 6B). Fibre labelling in 
layer I was sparse or absent in the olfactory cortex 
(Fig. 3A). 
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DISCUSSION 

Technical considerations 

Previous studies have shown that diaphorase label 
is sensitive to fixation treatments. 33"67'111 The overall 
differences in label that we noted among cases may be 
attributed to inadvertent differences in fixation, or  
may reflect individual differences among animals 
(Table 1). In spite of  the differences in the overall 
density, the pattern of  the regional distribution of  
positive neurons across architectonic areas and in the 
white matter  was strikingly similar in different ani- 
mals (Fig. 4A). These findings suggest that in normal  
monkeys, while the overall number of  positive 
neurons varies among animals, the pattern of  their 
regional distribution appears to be strictly regulated. 

Diaphorase expression is high in limbic cortices 

The distribution of  diaphorase-positive neurons 
differed considerably within prefrontal areas in a 
strikingly similar pattern in all animals. Olfactory 
and limbic prefrontal cortices had the highest density 
and eulaminate cortices had the lowest density of  
diaphorase-positive neurons. The results suggest that 
the differences in the expression of  diaphorase co- 
incide broadly with the structural differences noted in 
the prefrontal cortices of  the rhesus monkey. 7'9'14a5 
Thus, as the degree of  laminar definition increases 
from agranular limbic to dysgranular limbic and 
then to eulaminate areas, the density of  diaphorase- 
positive neurons decreased. 

Our results indicated that positive neurons in the 
cortex were concentrated in a superficial band (layers 
II, the upper part of  layer III) and a deep band (deep 
part of  layer V and layer VI), and were sparsely 

Table 1. Density ° of NADPH diaphorase positive neurons in layers I-III, IV-VI and the white matter of prefrontal and 
adjacent cortices** 

CASE: AN Cortex White matter Total Total Total 
Area I-III IV-VI Proximal Deep cortex white matter area 

1. OLF* 4.35 8.41 4.25 0.47 6.69 4.72 6.35 
2. PAll* 3.69 6.6 3.6 0.96 5.43 4.56 5.21 
3. Pro, ProM, G, Idg, 25, 13, 24, 32 0.95 3.45 6.07 2.5 1.91 8.57 3.62 
4. 14, O12, 11, M10, M9 0.99 3.41 4.76 1.91 1.82 6.67 2.81 
5. L10, LI2, R46, D9, D10 0.93 2.45 6.63 2.79 1.5 9.42 2.59 
6. C46, V8, D8 1.18 2.33 5.11 2.37 1.65 7.48 3.15 

CASE: AP Cortex White matter Total Total Total 
Area I- l l I  IV-VI Proximal Deep cortex white matter area 

1. OLF* 19.15 8.81 1.05 0 13.11 1..05 9.39 
2. PAll* 6.65 7.12 4.17 0 6.89 4.17 6.5 
3. Pro, ProM, G, Idg, 25, 13, 24, 32 5.46 5.18 4.89 0.75 5.35 5.64 5.42 
4. 14, O12, I1, M10, M9 3.24 3.51 4.64 4.13 3.36 6.07 3.92 
5. L10, L12, R46, D9, D10 2.59 3.47 3.56 1.54 2.95 5.1 3.37 
6. C46, V8, D8 3.94 4.34 3.47 1.11 4.14 4.57 4.27 

°Density = neurons/mm 2. 
*Olfactory cortices and area PAII have only three layers. The superficial layers (I and II) are represented under the column 

CORTEX I-III and the deep layer (III) under the column CORTEX IV-VI. 
**Areas were grouped into six categories according to the degree of their laminar definition. Category 1 represents olfactory 

areas and category 6 the best delineated eulaminate areas. 
A letter before an architectonic area indicates: C, caudal; D, dorsal; L, lateral; M, medial; O, orbital; R, rostral; V, ventral. 
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distributed in deep layer III and layer IV, which are 
recipient of  thalamic projections (for review, see 
Ref. 52). These results are consistent with the obser- 
vations of  other  investigators. 45 We also noted that 
positive fibres in layer I of  eulaminate areas formed 
a horizontal strip which contrasted sharply with their 
scattered ramification in limbic cortices (Figs 3B, C; 
6). The above observations suggest that there are 
differences in the pattern of  branching of  processes 
of  diaphorase-positive neurons in limbic and in 
eulaminate areas. 

Relationship o f  diaphorase-positive neurons in the 
cortex and white matter 

Diaphorase-positive neurons were densely dis- 
tributed in the white matter  below layer VI. In fact, 
in most areas the overall density of  positive neurons 
was higher in the white matter  than in the overlying 
cortex. There are several explanations for the strong 
presence of  diaphorase-positive neurons in the white 
matter  in adult primates. First, their presence in the 
proximal white matter, in a position previously held 

A 

Fig. 3. Bright-field photomicrographs showing diaphorase-positive neurons in the olfactory cortex (A), 
dysgranular area 24 (B), and eulaminate area 46 (C). Frames D, E, and F show the cortices depicted 

respectively in A, B, C at higher magnification. Scale bars = 100 pm. 
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by the subplate during development, suggests that 
they may be vestigial, having survived subplate elim- 
ination in postnatal life. ~6'64'H6 Diaphorase co-local- 
izes in neurons with somatostatin and neuropeptide 
y29,46.128 which are major components of the transient 
subplate and are generated early in cortical develop- 
ment. 46,57.~,~°3 The prevalence of diaphorase-positive 
neurons in the deep cortical layers which develop 
first 65,66,6s's3-s7 suggests that diaphorase may be ex- 
pressed early in ontogeny as well. 

Recent studies have provided evidence that di- 
aphorase or NOS-positive neurons have a role in 
development. Prominent expression of NOS or di- 
aphorase activity appears in the cortical plate of the 
developing rat and decreases substantially by 
birth. 23'124 In addition, the expression of diaphorase 
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Fig. 4. (A) Line graphs showing the rank order of the 
regional distribution of diaphorase-positive neurons in three 
cases. The areas in each cortical category are listed in Table 
1 and are arranged according to their laminar definition 
(1 olfactory, 6 best delineated eulaminate). Rank order 
depicts the density of NADPH diaphorase-positive neurons 
(1 highest density, 6 lowest density). The rank order of 
cortical categories in the three cases is highly correlated 
(P < 0.02). (B) The density of positive neurons (by rank) in 
the cortex (solid line) was inversely related to the density of 
labelled neurons in the underlying white matter (dashed line) 

as shown for cases AN (top) and AP (bottom). 

coincides with the time of peak refinement of axonal 
projections during development. Moreover, there is a 
concomitant decline in the expression of diaphorase 
(or NOS) a s  axons are eliminated during 
maturation. 93,n2 Finally, inhibition of NOS during 
development reduces the elimination of ipsilateral 
retinotectal projections within the visual system of 
the chick. 123 The above evidence suggests that 
diaphorase neurons may have an active role in shap- 
ing the cortex. 

In our own material we saw a clear relationship in 
the density of diaphorase-positive neurons in the 
cortex and white matter. Thus, positive neurons were 
abundant in the white matter below eulaminate areas 
where the cortical distribution is low, and they were 
comparatively sparsely distributed beneath olfactory 
and limbic cortices where the cortical distribution is 
high (Fig. 4B). This relationship is consistent with the 
idea that neuronal migration in limbic prefrontal 
cortices may precede that of eulaminate areas and 
may coincide with a time when diaphorase expression 
is high. Further developmental studies are necessary 
to address this issue. 

The possible significance of diaphorase-positive 
neurons during development and in the adult cortex 
has recently been addressed in a post-mortem investi- 
gation of the brains of patients diagnosed with 
schizophrenia, which is thought to have a develop- 
mental origin. 5~'58 Compared to controls, brains of 
schizophrenic patients showed an overall decrease of 
diaphorase-positive neurons in areas 9 and 21 and in 
the subjacent white matter and an increase in the deep 
white matter. 2'3 In view of our findings which indicate 
that diaphorase is enriched in limbic cortices, it may 
be interesting to examine these areas in schizophrenic 
brains particularly since the disorder affects dispro- 
portionally limbic cortices. 89"121 

Functional implications 

Recent studies have implicated NO in synaptic 
plasticity in the hippocampus, cerebellum, and cor- 
tex 18'19'33'44'79"80"98'99'104"114'125 (for review, see Refs 22, 

100, 106, 107, 127). We have shown that diaphorase- 
positive neurons are preponderant in agranular and 
dysgranular areas, which are the limbic component of 
the cortical mantle. Limbic cortices have an import- 
ant role in mnemonic p r o c e s s .  5'37'119"126 Moreover, the 
areas with a high number of diaphorase-positive 
neurons in the orbital and medial prefrontal cortices 
are the major recipients of input from other subcor- 
tical limbic structures including the amygdala and the 
hippocampus. 1'4'11 Diaphorase is also enriched in 
neurons of the amygdala and subicular fields of the 
hippocampal formation 2°'7°'g1,1°5'"4,n5 which issue ro- 
bust projections to the prefrontal cortex L°'ll (for 
review, see Ref. 91). Thus, prefrontal limbic areas and 
subcortical limbic structures which are intercon- 
nected constitute a mnemonic network which may be 
influenced by NO. 
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Fig. 5. Diaphorase-positive neurons in layers V V I  of dorsal area 9 (A) and in the proximal white matter 
underlying dorsal area 9 (B). Scale bars = 100 #m. 

A 

Fig. 6. Comparison of diaphorase-positive fibres in layer I of eulaminate area 8 (A) and limbic area 24 
(B). Dense fibre labelling is shown in the central part of the top third of layer 1 (A); in contrast, only 

sparse labelling is seen in layer l of area 24 (B). Scale bars = 50 ~m. 
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Our  results also showed tha t  the density of  di- 
aphorase-posi t ive  neurons  was generally higher  in the 
orbi ta l  t han  in the medial  c o m p o n e n t  of  the prefron-  
tal segment  of  the l imbic system. The  above  evidence 
suggests tha t  the differential expression of  d iaphorase  
in the pref ronta l  cortex may  follow funct ional  lines. 
Basal pref ronta l  areas are connected  with inferior  
t empora l  visual cortices 6'8 which have been implicated 
in the analysis of  visual features and  their  mem-  
ory.39,40,48 50.108 Media l  cortices are preferential ly con- 

nected with dorsola tera l  visual cortices 6 which have 
been implicated in visuospat ial  funct ions  (for review, 
see Ref. 113). Addi t iona l  studies are necessary to 
address  whe ther  the t rend of  d iaphorase-posi t ive  
neurons  tha t  we observed in the two pref ronta l  
sectors dist inguishes funct ional  districts of  t empora l  
and  dorsola tera l  visual areas as well. 

CONCLUSION 

Our  findings suggest tha t  the d is t r ibut ion  of  
the class of  neurons  with d iaphorase  in pref ronta l  
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cortices and  in the under lying white mat te r  is no t  
random.  Diaphorase-posi t ive  neurons  are mos t  
densely dis t r ibuted in limbic pref ronta l  cortices. NO,  
produced in diaphorase-posi t ive  neurons,  may  have a 
role in the demons t ra ted  funct ion of  pref ronta l  limbic 
cortices in memory.  Moreover ,  the prevalence of  
diaphorase-posi t ive  neurons  in the white mat te r  ap- 
pears to be inversely related to their  density in the 
overlying cortex. This observa t ion  may reflect tem- 
poral  differences in the deve lopment  of  dist inct  pre- 
f ronta l  cortices. Fu r the r  studies are necessary to 
determine the funct ion of  d iaphorase  in pref ronta l  
areas, its possible role in deve lopment  and  in the 
funct ional  archi tecture of  limbic areas in normal  and  
pathological  states. 
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